1. An algorithm is described by the following flow chart :

(i) Carry out the algorithm when the input values are $A=87$ and $\mathrm{B}=13$, listing the values of A and N at each stage.
(ii) State the purpose of this algorithm.
2. Six computer terminals need to be connected on a network. The cost of wiring between each pair is shown on the table

	A	B	C	D	E	F
A	-	56	48	32	89	65
B	56	-	37	54	38	49
C	48	37	-	29	46	45
D	32	54	29	-	39	51
E	89	38	46	39	-	54
F	65	49	45	51	54	-

Use Prim's algorithm, starting at A, to find the cheapest way of connecting them all together. Indicate the order in which links are chosen, and sketch the final layout.
3. The diagram shows a set of roads; distances are given in metres. After any fall of snow, the council sends out a gritting lorry, which has to go at least once down the middle of each road.

(i) Write down the valency of each node in the network.
(ii) Find the minimum distance the lorry must travel, starting and finishing at G.
(iii) The lorry could travel directly from B to F, along a disused alley of length 410 m . Explain why this would shorten the total distance that it would travel.
4. In the diagram for Question 3, the council surveyor, who is based at G, has to visit all six sites A, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and F and then return to G .
(i) Find an upper bound for the total distance that he must travel. Briefly explain why your method gives an upper bound.
(ii) By deleting E, find a lower bound for the distance that he must travel.
(iii) Show that it is possible to find a lower bound that is greater than 2.5 km .
5. The diagram shows a network of towns, with the travel time between each pair (in hours) shown on each connecting arc, where x is an integer.

(i) Use Dijkstra's algorithm to show that the quickest route from A to C takes either 12 hours or $(7+x)$ hours, depending on the value of x.
(ii) Find the four possible expressions for the shortest time from A to H .
(iii) Given that ADEGH is the quickest route, find the value of x.
6. (i) Describe the purpose of slack variables in the Simplex Algorithm.

Three types of tree are to be used in a garden. They each take up different amounts of ground and provide different amounts of shade, as shown in the table together with their costs :

	Ash	Beech	Cedar
Ground $\left(\mathrm{m}^{2}\right)$	2	3	4
Shade $\left(\mathrm{m}^{2}\right)$	3	2	4
$\operatorname{Cost}(£)$	15	12	18

Letting x be the number of Ash trees, y the number of Beech and z the number of Cedars,
(ii) write down two inequalities for x, y, and z, given that the garden is $60 \mathrm{~m}^{2}$ in area, and that there is a budget of $£ 300$.
It is required to maximise the total amount of shade.
(iii) Write down a Simplex tableau to model the situation as a linear programming problem.
(iv) Find the maximum amount of shade available under these constraints.

DECISION MATHS 1 (C) PAPER 10 : ANSWERS AND MARK SCHEME

1. $\begin{array}{llllllllll}\text { (i) } & A & 87 & 74 & 61 & 48 & 35 & 22 & 9\end{array}$

Print 6, 9
(ii) The algorithm divides A by B (by successive subtraction), giving the integer answer, together with the remainder

M1 M1
A1 A1
6
2. Order of adding arcs is $\mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{E}$ and F , with arcs AD, DC, CB, BE, CF
Total length $=181$
M1 M1
A1 A1
A1
Network sketched, e.g. :

3. (i) A 2, B 3, C 3, D 3, E 4, F 3, G 4 M1 A1
(ii) Pairing of odd nodes: $\mathrm{BC}+\mathrm{DF}=550+390=940$, B1
$\mathrm{BD}+\mathrm{CF}=400+290=690, \quad \mathrm{BF}+\mathrm{CD}=840+260=1100$
Shortest to repeat BD and CF, giving total distance $3970+690=4660$
B1 B1
M1 A1
(iii) The arc BF would make B and F into even nodes, so now only CD needs to be repeated. The new total is $3970+260+410=4640$

M1 A1
4. (i) By any suitable method, M.S.T. consists of arcs DE, DG, EC, CF, M1 A1 DB, AG; length $=1730 \mathrm{~m} \quad \mathrm{U}$. bound $=2 \times 1730=3460 \mathrm{~m}$

M1 A1
This is an upper bound because traversing the M.S.T. twice from G certainly visits every town and returns to G , so it is a solution

B1
(ii) M.S.T. without E has length 1870

B1
Add shortest arcs to rejoin E, giving $1870+80+180=2130 \mathrm{~m}$
M1 A1
(iii) Deleting and rejoining A, get $1730+800=2530 \mathrm{~m}$

M1 A1
5. (i) Shortest routes to C are $\mathrm{AC}, 12$, or $\mathrm{ADEC}, 7+x$

M1 M1 A1 A1
(ii) Shortest routes to H are: via C : $12+2 x$, or 26 , or $7+3 x$ or $21+x$;

M1 A1
via $\mathrm{G}: 14+x$ or 19 , so 4 possible shortest times are $19,14+x, 12+2 x$
M1 A1 M1 and $7+3 x$

A1
(iii) ADEGH takes $14+x$; if this is less than 19 , then $x<5$; if $14+x$ is less than $7+3 x$, then $7<2 x$ i.e. $3.5<x$ M1 Therefore $3.5<x<5$, i.e. $x=4$ (this also gives $14+x<12+2 x$)

M1 A1
13
6. (i) Slack variables enable inequalities to be written as equations
(ii) $2 x+3 y+4 z \leq 60, \quad 15 x+12 y+18 z \leq 300$ i.e. $5 x+4 y+6 z \leq 100$ B1 B1
(iii) To maximise $P=3 x+2 y+4 z$:

P	x	y	z	r	s	
1	-3	-2	-4	0	0	0
0	2	3	4	1	0	60
0	5	4	6	0	1	100

M1 A1 A1
(iv)

P	x	y	z	r	s	
1	-1	1	0	1	0	60
0	0.5	0.75	1	0.25	0	15
0	2	-0.5	0	-1.5	1	10

P	x	y	z	r	s	
1	0	0.75	0	0.25	0.5	65
0	0	0.875	1	0.625	-0.25	12.5
0	1	-0.25	0	-0.75	0.5	5

M1 A1
The objective row is all positive, so there is a maximum amount of shade of $65 \mathrm{~m}^{2}$, when $x=5, y=0$ and $z=121 / 2$.

M1 A1
Clearly, there cannot be a half tree, so the practical answer is 5 Ash trees and 12 Cedar trees, giving $63 \mathrm{~m}^{2}$ of shade. (The saving of $1 / 2$ of a cedar tree does not allow the purchase of a whole ash or beech, to increase the M1 A1 amount of shade.)

