DECISION MATHEMATICS (C) UNIT 1

TEST PAPER 10

An algorithm is described by the following flow chart : 1.

- (i) Carry out the algorithm when the input values are A = 87 and B = 13, listing the values of A and N at each stage. [4] [2]
- (ii) State the purpose of this algorithm.
- 2. Six computer terminals need to be connected on a network. The cost of wiring between each pair is shown on the table

	А	В	С	D	Е	F
А	-	56	48	32	89	65
В	56	-	37	54	38	49
С	48	37	-	29	46	45
D	32	54	29	-	39	51
Е	89	38	46	39	-	54
F	65	49	45	51	54	-

Use Prim's algorithm, starting at A, to find the cheapest way of connecting them all together. Indicate the order in which links are chosen, and sketch the final layout. [7]

3. The diagram shows a set of roads; distances are given in metres. After any fall of snow, the council sends out a gritting lorry, which has to go at least once down the middle of each road.

- (i) Write down the valency of each node in the network. [2]
- (ii) Find the minimum distance the lorry must travel, starting and finishing at G. [5]
- (iii) The lorry could travel directly from B to F, along a disused alley of length 410 m. Explain why this would shorten the total distance that it would travel. [2]

- 4. In the diagram for Question 3, the council surveyor, who is based at G, has to visit all six sites A, B, C, D, E and F and then return to G.
 - (i) Find an upper bound for the total distance that he must travel. Briefly explain why your method gives an upper bound. [5]
 - (ii) By deleting E, find a lower bound for the distance that he must travel. [3]
 - (iii) Show that it is possible to find a lower bound that is greater than 2.5 km. [2]
- 5. The diagram shows a network of towns, with the travel time between each pair (in hours) shown on each connecting arc, where *x* is an integer.

- (i) Use Dijkstra's algorithm to show that the quickest route from A to C takes either 12 hours or (7 + x) hours, depending on the value of x. [4]
- (ii) Find the four possible expressions for the shortest time from A to H.
- (iii) Given that ADEGH is the quickest route, find the value of *x*.
- 6. (i) Describe the purpose of slack variables in the Simplex Algorithm. [2]

Three types of tree are to be used in a garden. They each take up different amounts of ground and provide different amounts of shade, as shown in the table together with their costs :

	Ash	Beech	Cedar
Ground (m ²)	2	3	4
Shade (m ²)	3	2	4
Cost (£)	15	12	18

Letting x be the number of Ash trees, y the number of Beech and z the number of Cedars,

(ii) write down two inequalities for *x*, *y*, and *z*, given that the garden is 60 m² in area, and that there is a budget of ± 300 . [2]

It is required to maximise the total amount of shade.

- (iii) Write down a Simplex tableau to model the situation as a linear programming problem.
- (iv) Find the maximum amount of shade available under these constraints. [8]

[6]

[3]

[3]

DECISION MATHS 1 (C) PAPER 10 : ANSWERS AND MARK SCHEME

1.	(i)	A	87 1	74 2	61 3	48 4	35 5	22	9		M1 M1	
		Print 6 9	1	2	5	4	5	0			A1 A1	
	(ii)	The algorith	m divi	des A b	y <i>B</i> (by	success	sive sub	traction), givin	g the		
		integer answ	ver, tog	ether w	vith the	remainc	ler		,, 0	B2		6
2	Ord	er of adding	arce is		' R F	and F					M1 M1	
2.	with	arcs AD. D	C. CB.	BE. CI	, D , L F	and I,					A1 A1	
	Tota	al length = 18	81	,,							A1	
	Netv	work sketche	ed, e.g.	:								
		A	32	D	29	С	45	F				
				'	37							
				B	57							
			38									
		E									M1 A1	7
3	(i)	A2 B3 (ח צר	3 F /	F3 (G A					M1 A1	
5.	(ii)	Pairing of o	dd nod	$\frac{1}{1}$ les: BC	1 + DF	= 550 +	390 = 9	940.			B1	
	()	BD + CF =	400 +	290 = 6	590,	BF +	- CD =	840 + 20	60 = 11	00	B1 B1	
		Shortest to	repeat	BD and	l CF, gi	ving tot	al dista	nce 397	0 + 690	= 4660	M1 A1	
	(iii)	The arc BF	would	make I	3 and F	into ev	en node	es, so no	w only	CD		
		needs to be	repeat	ed. The	e new to	otal is 3	970 + 2	60 + 41	0 = 464	0	M1 A1	9
4.	(i)]	By any suital	ole met	thod, M	.S.T. co	onsists o	of arcs I	DE, DG	, EC, Cl	F,	M1 A1	
	, ,	DB, AG; len	gth = 1	1/30 m	ana te	U. be	ound =	2 X 1 / 3	0 = 346	0 m	MIAI	
		riiis is an up certainly visi	ts ever	w town	and ret	urns to	g uie ivi. G so it	is a solu	ution	10	B 1	
	(ii) I	M.S.T. witho	out E h	as lengt	h 1870	unis to	0, 50 ft	15 a 501	ution		B1	
	Ā	Add shortest	arcs to	rejoin	E, givir	ng 1870	+ 80 +	180 = 2	130 m		M1 A1	
	(iii) I	Deleting and	rejoin	ing A, g	get 1730	0 + 800	= 2530	m			M1 A1	10
~		C1		a .	G 10		0.7					
э.	(1)	Shortest rol	ites to	C are A	C, 12,	or ADE $12 \pm 2x$	C, 7 + 3	r = 7 + 3	$2x \circ r \circ 1$	l act	MI MI M1 A1	ALAI
	(11)	via $G \cdot 14$ +	100 r or 1	9 so 4	nossihl	12 + 2x e shorte	, 01 20, st times	017 + 3	14 + r	+ x, 12 + 2r	MI AI M1 A1	M1
		and $7 + 3x$	1	2,50 F	rossioi		St time	, ui (1),	, I I I <i>N</i> ,		Al	
	(iii)	ADEGH tal	kes 14	+ <i>x</i> ; if t	his is le	ess than	19, the	n $x < 5;$				
	. /	if $14 + x$ is 2	less that	an 7 + 3	x, then	7 < 2x	i.e. 3.5	< x			M1	
		Therefore 3	3.5 < x	< 5, i.e	x = 4	(this als	so gives	x 14 + x	< 12 + 2	2 <i>x</i>)	M1 A1	13

o. (1) black variables enable mequanties to be written as equations	6.	(i) Slack variables	s enable inequalities to be	written as equations
---	----	---------------------	-----------------------------	----------------------

(ii) $2x + 3y + 4z \le 60$, $15x + 12y + 18z \le 300$ i.e. $5x + 4y + 6z \le 100$ (iii) To maximise P = 3x + 2y + 4z:

		5						
Р	x	у	Z	r	S			
1	-3	-2	-4	0	0	0		
0	2	3	4	1	0	60		
0	5	4	6	0	1	100		
					M1 .	A1 A1		
(iv)								
Р	x	у	Z.	r	S			
1	-1	1	0	1	0	60		
0	0.5	0.75	1	0.25	0	15		
0	(2)	-0.5	0	-1.5	1	10		
M1 A1								
Р	x	у	Z.	r	S			
1	0	0.75	0	0.25	0.5	65		
0	0	0.875	1	0.625	-0.25	12.5		
0	1	-0.25	0	-0.75	0.5	5		

M1 A1

B2

B1 B1

The objective row is all positive, so there is a maximum amount of shade of 65 m², when x = 5, y = 0 and $z = 12 \frac{1}{2}$. M1 A1 Clearly, there cannot be a half tree, so the practical answer is 5 Ash trees

and 12 Cedar trees, giving 63 m^2 of shade. (The saving of $\frac{1}{2}$ of a cedar tree does not allow the purchase of a whole ash or beech, to increase the M1 A1 amount of shade.)

15